
FOODFINDER

(AI FOR VIDEOGAMES PROJECT)

 AUTHOR: Federico Maglione 962587

SUMMARY
1 GAME CONCEPT ... 3

2 GAME ELEMENTS ... 4

2.1 ENVIRONMENT ... 4

2.2 NON PLAYER CHARACTER PROPERTIES .. 6

3 ARTIFICIAL INTELLINGENCE .. 7

3.1 NON-PLAYER-CHARACTER – FSM ... 7

3.1.1 STATE ... 7

3.1.2 TRANSITION ... 7

3.1.3 STATE – TECHNICAL DESCRIPTION .. 8

3.1.4 TRANSITION – TECHNICAL DESCRIPTION .. 8

3.2 MAP AND FRAGMENT MAP .. 9

3.2.1 STRUCTURES .. 9

3.2.2 GRAPH GENERATOR .. 11

3.2.3 CREATION STEPS .. 11

4 PATHFINDING ... 13

4.1 THE PROCESS ... 13

4.2 GRAPH OF THE STEPS .. 14

5 PREOCEDURAL CONTENT GENERATION .. 15

5.1 FRAGMENT MAP GENERATION (SINGLE PLANE) ... 15

5.2 ENVIRONMENT GENERATION .. 15

5.3 RESULTS EXAMPLE: ... 16

6 COMPONENTS PROPERTIES ... 17

6.1 TERRAIN .. 17

6.1.1 ENVIRONMENT SETTINGS ... 17

6.1.2 PROBABILITY SETTINGS ... 17

6.1.3 NEARESTPLANE .. 17

6.1.4 GIZMO SETTINGS ... 18

6.2 NPC .. 18

 6.2.1 BEHAVIOR NPC .. 18

6.2.2 GIZMO DEBUG ... 18

6.3 CAMERA .. 19

7 HIEARARCHY ... 19

8 SCRIPT ... 19

1 GAME CONCEPT

Like any living being, the NPCs present in the game have the goal of eating to survive. To do this

they have to search for food along the map. Each NPC has a percentage of energy (which identifies

life). Whenever an NPC eats a food, it feeds its energy.

Each time an NPC makes a move, the energy decreases. Therefore, to survive, they must search for

food as quickly as possible.

To find food, each NPC has physical characteristics, such as field of vision, speed of movement,

weight, height etc. These characteristics have an impact on the search for food. For example, if an

NPC is heavier but has a greater field of vision than the others, it will tend to identify the food that

surrounds it before the others but with a slower movement speed.

If an NPC is faster but not very tall, it will tend to move faster but will have a harder time identifying

the food around it.

When the energy runs out, the NPC can rest, recover a percentage of energy and start looking for

food again. This action is allowed only once per NPC, after which the NPC dies.

2 GAME ELEMENTS

2.1 ENVIRONMENT
 The map is structured with a set of smaller maps which we will call fragment maps.

Each fragment map can have a different environment given by a group of possible

environments. Like in the example below:

 Env System: Game object used to represent the set of possible environments that

can be instantiated. Each time a new fragment map is generated its environment is

extrapolated from this set.

MAP

Fragment Map

 Foods: Each fragment map presents a list of foods that can spawn on the map

 Colliders: Each fragment map has a collider used to identify when an NPC enters that

section of the map

2.2 NON PLAYER CHARACTER PROPERTIES
Each NPC has physical characteristics:

 Reaction Time: How often the NPC do an action.

 Energy: Initial energy of the NPC

 Energy gain: How much energy he takes from food

 Movement Speed

 Rotation Speed

 Vision Range: How far can he find food

These characteristics change depending on the physical structure (model) of the NPC. Like in

example below:

 Each NPC is provided with a script to calculate the route with different heuristics.

Movement Speed: 10

Vision Range : 20

Movement Speed: 20

Vision Range : 10

3 ARTIFICIAL INTELLINGENCE

3.1 NON-PLAYER-CHARACTER – FSM
The behavior of the NPC is managed through an FSM with the following structure:

3.1.1 STATE

 IDLE: The NPC does nothing.

 THINK HOW TO REACH FOOD: Calculate the path to reach the food.

 THINK WHERE GO: Calculate random path to follow.

 WALKING TO FOOD: Move the NPC along the calculated path until reaching the food.

 MOVE RANDOMLY: Move the NPC along the random calculated path.

 EAT FOOD: The NPC eats the food and increases its energy.

 REST: The NPC rests to regenerate some energy.

 DIE: The NPC die.

3.1.2 TRANSITION
 Foods around: Check if there is any food in his range of vision.

 Foods not around: Check if there isn’t any food in his range of vision.

 Path for food found: Check if the calculated path for food is available.

 Path for food not found: Check if the calculated path for food isn’t available

 Foods around while walking to food: Check if along the food path there is a near food to

eat.

 Path for food reached: Check if the NPC reached the food.

 Food not available or eated: check if the food has been eaten

 Random path found: Check if the random calculated path is available.

 Random path not found: Check if the random calculated path isn’t available.

 Destination reached: Check if the random calculated path has been followed.

 Low energy: Check if the energy is equal to 0.

 Good energy: Check if the energy is above 0.

 Already rested: Check if the NPC already rested.

3.1.3 STATE – TECHNICAL DESCRIPTION
Below is a technical description of the more complex states:

 WALKING TO FOOD: This state, as already said, allows the NPC to move from its node

position to the node position of the food following the calculated path. To do this, two

nested coroutines are called:

The first is MovingToFood ():

it allows you to check every time we move from one node to another until the destination

node is reached.

The second NodeToNodeMovementFood():

It allows you to move the NPC from node a to node b with a smooth transition (using the

MoveTowards method) and with a smooth rotation (interpolating the current direction and

the new direction)

 MOVE RANDOMLY: Same as walking to food with a difference that it’s work with a random

destination node.

3.1.4 TRANSITION – TECHNICAL DESCRIPTION
Below is a technical description of the more complex transition:

 Foods around: Check’s every game object with the specific food tag if there is at least one in

the vision range of the NPC. From the list of food in the range it’s takes the food with the

minimum distance from the NPC, then stop the coroutine, assign the new target food node,

and then return true to start the next state.

 Foods around while walking to food: This transition can occur when the NPC is following a

path for a found food. This transition makes it possible to verify whether along this path

there are other foods that are closer to be reached

3.2 MAP AND FRAGMENT MAP

3.2.1 STRUCTURES
 Fragment Map: Portion of the map represented by a plane of dimension (X, 1, Z).

 Fragment Graph: Each fragment map is associated with a graph generated starting from the

matrix given by the dimensions of the plane (Matrix [X, Z])

 Map: Set of all fragment maps

 Main Graph: Graph given by the union of all fragment graphs

 Abstract Graph: Hierarchical graph generated starting from the main Graph and the

fragment Graphs.

** Main Graph **Abstract Graph **Fragment graph

Properties:

 graph topology: mesh

 Edge: bidirectional

 Edge probability: the probability has a range that goes from 50 to 100%, this is to try to avoid

having too many unreachable partitioned graphs.

Each fragment graph is composed of XxZ nodes (where X, Z is the X and Z axis dimension of the

plane) plus 1 node for each path to each adjacent graph. It is possible to have only one path for

each adjacent graph.

XxZ nodes + 4 node for each path to each adjacent graph

3.2.2 GRAPH GENERATOR
Starting from a single plane, the first fragment graph is generated.

To do this a matrix is generated starting from the x, z dimensions of the plane.

For each coordinate of the matrix, a node of the graph is assigned. Each node is associated with a

game object with the corresponding position on the plane.

Instantiated game objects can be of two types:

 Pin: Empty Game Object that used to identify the location of the associated node.

 Food: Game Object that identifies the food that NPCs can eat. There is a probability to be

instantiated.

Then a first abstract graph is generated by identifying the 4 exit / entry points of the plan and

analyzing if there is at least one path from each exit / entry point to any other exit / entry point, if

so, an edge is associated with this pair. At this point we will have a fragmented graph and the

associated abstract graph. Then the adjacent floors will be generated, and the same logic will be

reapplied.

Each time a fragment map is generated, the adjacent fragment maps are associated with it by saving

them in a game object structure present in the component of the created fragment map.

So, each fragmented graph will be merged into a single main graph, and each abstract graph will be

merged into a single main abstract graph.

At this point, the various exit points must be connected to the entry points of the adjacent graphs.

Since each fragment map saves the game object of the various adjacent fragment maps, by

analyzing them it is possible to associate the correct exit nodes with the entry nodes and update the

graph. At this point the graph will be complete and ready to be used.

3.2.3 CREATION STEPS

1. Generation of the fragmented graph

2. Generation of the abstract graph for that specific fragmented graph

3. Instantiation of adjacent floors with consequent generation of their fragmented and abstract

graphs

4. Merge of the various fragmented graphs into a single main graph

5. Merge of various abstract fragmented graphs into a single main graph

6. Generation of the nodes / edge of entry and exit to connect the various graphs, both for

abstract graph and main graph

4 PATHFINDING

4.1 THE PROCESS
The pathfinding process is used to identify a random path or path to food.

The function for both situations is equivalent. The only thing that changes is:

 for the random path the destination node is randomly extrapolated from the list of nodes

of the main graph.

 for the path for food the destination node has already been discovered and is equivalent to

the node to which a certain food is assigned.

Since the search for the route must work on a map that is constantly expanding (See paragraph 5) a

very efficient system is needed. Therefore, the methodology of a hierarchical graph is used to

generate a higher-level graph (abstract graph) that helps us to calculate the path.

That said, when pathfinding is performed, these are the operations that are performed(See 4.2

Section for graphical interpretation)

1. The abstract paths from the starting node to the exit nodes of the fragment graph in which

the NPC is located is calculated.

2. The abstract paths from the various entry point nodes (of the fragment graph where the

destination node is present) to the destination node is calculated.

3. The abstract path from the starting node to the destination node is calculated using the

abstract graph containing the information calculated in points 1 and 2.

4. The abstract path calculated is used to determine each single path that connects the nodes

of the abstract path. Once the individual paths have been determined, they are chained

together to determine the entire level 0 path to follow.

4.2 GRAPH OF THE STEPS

5 PREOCEDURAL CONTENT GENERATION

5.1 FRAGMENT MAP GENERATION (SINGLE PLANE)
Each fragment map is associated with a collider that allows you to identify when an NPC enters

that portion of the map. When this happens, adjacent fragment maps are generated.

5.2 ENVIRONMENT GENERATION
To generate different environments there is a structure that associates different game objects

to different sets of environments.

A graph is associated with each fragment map. When creating the graph, an environment set is

determined, and an object of this set is instantiated at each node-to-node connection that is

not present. Furthermore, to make the environment more alive, objects are instantiated that

do not interfere with the position of the graph nodes.

For food spawning, there is a chance that it will spawn on every single node of the fragmented

map.

Properties:

Below is the list of properties of component of the map:

 Food Probability: Food spawn probability ranging from 0 to 100%

 Edge Probability: Probability that a node is connected, ranging from 50 to 100%

5.3 RESULTS EXAMPLE
The result after some time from starting the simulation is the following:

Environment Map:

Main and Abstract

Graph

6 COMPONENTS PROPERTIES

6.1 TERRAIN

6.1.1 ENVIRONMENT SETTINGS

 Scene Object_Empty: Identifies the empty object to be associated with each node of the

graph.

 Scene Object_foods: Identify the list of foods that can be instantiated on the graph nodes.

 Number NPC: Number of NPCs that spawn.

 Fragment Terrain: Pointer to the plane associated with that component.

 Fragment Tag: Name to identify a fragment Terrain.

 Main Tag: Name To identify the main Terrain.

 Active Env: Used to enable or disable the environment instantiation.

6.1.2 PROBABILITY SETTINGS

 Specific Seed: It allows you to work on the same test case.

 Food Probability: Probability to spawn food.

 Edge Probability: Probability to have a connection between nodes.

6.1.3 NEARESTPLANE
Structure to identify the floors surrounding the current floor.

6.1.4 GIZMO SETTINGS

 Gizmo Main Graph: Show the main Graph nodes of the map.

 Gizmo Abstract Graph: Show the main Abstract graph nodes of the map or single fragment

Map

 Gizmo Fragment Map: Show the fragment Graph nodes of the selected fragment map.

 Gizmo Draw Arrow: Show both bidirectional edges with an arrow in the direction of the

edge.

 Gizmo Draw Line: Show the edges of the selected Graph.

6.2 NPC

6.2.1 BEHAVIOR NPC

 Reaction Time: How often the NPC perform an action.

 Energy: Initial energy of the NPC.

 Energy gain: How much energy he takes from food.

 Movement Speed.

 Rotation Speed.

 Vision Range: How far can he find food.

6.2.2 GIZMO DEBUG

 Path Color: Different colors for the path to follow

 Gizmo Show Path: If checked show the gizmo of the path to follow

 Main Tag: Name To identify main Terrain

 Fragment Tag: Name to identify the fragment Terrain

6.3 CAMERA
In game it is possible to switch from third person view to top view with the F button

In game it is possible to switch from an NPC to another with the E (next) and Q(previous) button

7 HIEARARCHY

 Planes (fragment Terrain)

o Environment

 All list of instantiated objects

o Foods

 All list of instantiated food

 Env System: Game object that contains the structure of all group of environments

 NPCs

o NPC Skeleton

o Camera

8 SCRIPT

 MapGenerator.cs: It manages all the creation of the map and the environment

 NPCsCamera.cs: It manages the camera control

 NPCSystem.cs: It manages the FSM of the NPC.

 NPCMemory.cs: It manages the calculated path

 HPASolver.cs: It manages the pathfinding

	1 GAME CONCEPT
	2 GAME ELEMENTS
	2.1 ENVIRONMENT
	2.2 NON PLAYER CHARACTER PROPERTIES

	3 ARTIFICIAL INTELLINGENCE
	3.1 NON-PLAYER-CHARACTER – FSM
	3.1.1 STATE
	3.1.2 TRANSITION
	3.1.3 STATE – TECHNICAL DESCRIPTION
	3.1.4 TRANSITION – TECHNICAL DESCRIPTION

	3.2 MAP AND FRAGMENT MAP
	3.2.1 STRUCTURES
	3.2.2 GRAPH GENERATOR
	3.2.3 CREATION STEPS

	4 PATHFINDING
	4.1 THE PROCESS
	4.2 GRAPH OF THE STEPS

	5 PREOCEDURAL CONTENT GENERATION
	5.1 FRAGMENT MAP GENERATION (SINGLE PLANE)
	5.2 ENVIRONMENT GENERATION
	5.3 RESULTS EXAMPLE

	6 COMPONENTS PROPERTIES
	6.1 TERRAIN
	6.1.1 ENVIRONMENT SETTINGS
	6.1.2 PROBABILITY SETTINGS
	6.1.3 NEARESTPLANE
	6.1.4 GIZMO SETTINGS

	6.2 NPC
	6.2.1 BEHAVIOR NPC
	6.2.2 GIZMO DEBUG

	6.3 CAMERA

	7 HIEARARCHY
	8 SCRIPT

